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ABSTRACT 

Let  n -- 4 or 8. We prove t h a t  any Lagrang ian  embedd ing  of S n -1  x $1 

into C n has a t r iv ia l  l inking class. We deduce t h a t  every embedd ing  of 

S 3 × S 1 into C 4 is isotopic to a Lagrang ian  embedding.  This  is false if 

n = 8 .  

1. I n t r o d u c t i o n  

Given a totally real embedding j of a compact,  oriented, manifold M n with- 

out boundary into C n and a nowhere vanishing tangent vector field v, one can 

build a cohomology class an-l(j, v) E H'~-I(M'~, Z) called the l ink ing  c lass  

of j associated to v. This class is an invariant of isotopy classes of totally real 

embeddings. If  j l ,  j2: M '~ ~ C ~ are two totally real embeddings and if there 

exists a nonvanishing vector field v such that  a n - l ( j l ,  v) ~ an-l(j2, v), then j l  

and j2 are not isotopic through totally real embeddings. 

If M n is the 2-torus and v the translation field on •2, it has been shown in 

[12] that  for every a C H I ( T  2, Z) there exists a totally real embedding j :  T 2 > 

C 2 such that  al(j,v) -- a.  Nevertheless, if one looks for Lagrangian embed- 

dings, then the situation is completely different. In 1994~ Y. Eliashberg and L. 

Polterovich proved that  for every Lagrangian embedding j:  T 2 ~ C 2, one has: 

al(j,v) = 0 ([5]). 

Here we consider the product manifolds S 1 x S 3 and S 1 x S 7. I t  is easily 

checked that  these manifolds admit  a Lagrangian embedding into C ~ , for n =4 
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or 8. This follows from the Gromov-Lees theorem on Lagrangian immersions 

[10] combined with a result of M. Audin (see [1] pp. 617-618 and also remark B 

below). Moreover, it has been shown in [3] that these manifolds admit a family of 

totally real embeddings such that a,~_ 1 (J, v) takes a countable number of different 

values. Using the techniques developed by Y. Eliashberg and L. Polterovich, we 

prove the following rigidity results. 

THEOREM 1 : Let  n = 4 or 8 and j:  S 1 x $~-1  __+ C ~ be a Lagrangian embedding.  

Let v be a nonvanishing vector field on S1 x S n-1 tangent to the factor S 1. Then 

O'n_ l(j ,  v) = O. 

By a slight modification of the proof of Theorem 1, we also obtain similar 

results for some quotients of $1 × Sn-1, n = 4 or 8 (see section 4). 

Let E ( M  n, C ~) be the space of embeddings of M ~ into C" and E L a 9 ( M  ~, C ~) 

be the subspace of Lagrangian embeddings (all those spaces are endowed with 

the compact-open topology). We apply the preceding results to study the natural 

inclusion i: EL,~g(M n, C")  ~ E ( M  n, C")  with M n = S 1 x S n-~ and n = 4 or 8. 

THEOREM 2: The m a p  

 o(EL  (S × >  ro(E(S × 

is ~ onto i f  n - -  4, 
[ a constant  map  i f n  -- 8. 

The group Diff(M '~) acts on E ( M  ~, C ~ ) in an obvious way by reparametriza- 

tions of M n. We shall see that Diff(g 1 x S 3) acts trivially on 7ro(E(S 1 × S 3, C4)). 

Theorem 2 implies that there exist two Lagrangian embeddings of S 1 x S 3 into 

C 4 such that  the images of these maps are not isotopic in C 4 as nonparametrized 

submanifolds. 

Given two Lagrangian immersions jo, Jl: M '~ ~ C ~ we define a cohomology 

class A( jo , j l )  E H3(Mn,  Z) which is an obstruction to the existence of a La- 

grangian regular homotopy joining Jo and j l .  If Jo and j l  are two Lagrangian 

embeddings of S 1 × S 3, it turns out that the modulo 2 reduction of this class - -  

denoted by e(jo, jx) - -  is the only obstruction to the existence of a smooth isotopy 

between jo and jl-  Of course, e(jo, j l )  ~ 0 also implies that Jo and j l  belong to 

different components of the space ILag(g 1 x S 3, C 4) of Lagrangian immersions. In 

particular, two LagTangian embeddings which correspond to different elements 

of ~ro(E(S 1 × g3, C4)) are not only nonisotopic as smooth embeddings but also 

not regular homotopic as Lagrangian immersions. 

It is also worth noting that all Lagrangian immersions and, in particular, all 
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Lagrangian embeddings of S 1 x S n-1 into C ~ (n =4 or 8) are regular homotopic 

as smooth immersions. This is due to M. Audin, see [1] theorem 0.1. 

ACKNOWLEDGEMENT: L. Polterovich suggested to me the problem of the 

linking class while he was visiting the Universitd de Lyon. It  is a pleasure to 

thank him for many fruitful discussions. 

2. Definit ions and notat ions  

Let M '~ be a compact,  connected, oriented, n-manifold without boundary. Let 

< .,. > denote the Euclidean scalar product of C ~ -~ ]R 2'*, J the canoni- 

cal complex structure and w = <  J- , -  > the symplectic form. An embedding 

j :  M n > C ~ is called t o t a l l y  r ea l  if Tj(p) j (M ~) G JTj (p) j (M "~) = C ~ for 

every p E M n. It  is called Lagrangian if JTj (p) j (M n) = Tj)B)J(M ~) for every 

p C M n, or equivalently if j*w = O. Since J T M  ~ • T M  n = C '~ , every manifold 

admitt ing a totally real embedding necessarily has a zero Euler Poincard char- 

acteristic. Thus, there exists a nowhere vanishing vector field v on M ~. One 

can stretch the submanifold j ( M  '~) in the direction Jdj(v) by a small distance e. 

We denote by J v ( M  ~) the resulting submanifold. If  e is small enough, J v ( M  '~) 

is disjoint from j (M~) .  It  represents a n-cycle in C ~ \ j ( M n ) .  Using the exact 

sequence of the pair (C ~, C ~ \ j (M~) )  and Alexander duality, one obtains the 

following identifications: 

Hn(C '~ "-. j (Mn) ,  Z) _ Hn+I(Cn,  C ~ \ j(M'~),  Z) ~ Hn- I (M '~ ,  Z). 

Definition (cf. [3]): The linking class associated to the totally real embedding 

j and to the vector field v is the class 

( rn - l ( j ,v )  E H n - I ( M n , Z )  

represented in Hn(C n \ j ( M n ) ,  Z) by the n-cycle [Jv(Mn)]. 

3. P r o o f  o f  T h e o r e m  1 

3.1 A MODEL FOR S 1 × •3 AND T*(S 1 × $3). Let H denote the quaternionic 

field and let x = xo + x l i  + x2j + x3k be any element of H. Consider the free 

action of Z on ]E* = ]HI \ {0}, where the generator of Z acts by multiplication 

by 2. The quotient H*/Z  can be identified with S ~ × S 3. Let <, > denote the 

canonical scalar product on H* (< x, x' > =  Re(xx-7)). A basis of * 1 T; (S × S 3) is 
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1 1 
00----~-~ < X," >, 81 ---- ~-~  < xi," >, 

1 1 
o2= <xj , .> ,  <xk,->, 

and the Liouville form at a point (x,y) in T*(S 1 x S 3) will be given by 

A(z,y) = yoOo + ylO1 + Y202 + Y303 = ~ ' ~  < xy,. > =  Re(xyd~). 

Let TI*(S 1 × S 3) be the unit cotangent bundle of S 1 x S 3, and let ~ be the 

restriction of the Liouville form on TI*(S I x $3). Then ~ is the canonical contact 

form of T1"($1 x S3). Later on, we shall need the following lemma. 

LEMMA A: Let 

d 1 1 Re(dx.yAa~), 

1 
:~ = - ~ i  Re(xdy A d-~). 

One has d~ = E1 + E2 and (d~) 3 = 3  ~ 2 "  

Proof of Lemma A: The decomposition d~ --- E 1 -{- E 2 is obvious. Since (d~) 3 = 

o3 ~ 2 -  0 to conclude. Let G4(~) = -2 + 3~'2~1, it suffices to prove that  - 2 -  ~,2~1 
{A E SO(4) : f*~ = ~ where f (x ,  y) = (Ax, y)}. It is easily seen that G4(~) = 

Sp(1) = S 3. Thus, one can work out computations at points of the form (x, y) = 

(x0, 0, 0, 0, Yo, Yl, Y2, Y3). One gets 

E1 =-~( -y ldx2  A dxa + y2dxl A dx3 - y3dxl A dx2), 

3 

1 d 7~2 = - -  E y~ A dxi. 
X0 i=0 

A direct computation shows that 

~2E1 : 4dxo A dxl A dx2 A dx3 A dyo A (yldyl + y2dy2 + yady3), 

and since y~ + y2 + y2 + y3 2 = 1, it follows that E~E1 = 0. | 
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Remark A: Let A4(~) = {A e S0(4) : f*~ = ~ where f (x ,y )  = (Ax, Ay)}. 
Since A4(~) = {¢x: Y F-~ xyx -1 where x E S 3} = SO(ImH) ~- SO(3), actually 

one could reduce the computations of Lemma A starting with a point of the form 

(z, y) = (x0, 0, 0, 0, Y0, Y:, 0, 0). 

3 .2  SYMPLECTIC SURGERY. Using the symplectic tubular neighbourhood theo- 

rem of A. Weinstein, one gets that any Lagrangian embedding j :  S: x S 3 ~ C 4 

can be extended to a symplectic diffeomorphism (still denoted by j )  of a tubular 

neighbourhood of the zero section of T* (S 1 x S 3) into a tubular neighbourhood 

of j ( S :  x S 3) in C 4. Let No s = {tY[ <- e} denote a closed tubular neighbour- 

hood of the zero section of T*(S: × $3) and let N s = j(NSo). We also set 

E70 = ON 8 = {]y] = e} ~ S: x S 3 x S 3, E 7 = j(E~) and K s = C 4 \ Int(gS) .  Let 

fn be the diffeomorphisms of T1H * given by 

f,~: H* x S  3 >H* x S  3 

(x, v ) ,  > (xv",y) .  

Each f,, gives rise to a diffeomorphism of E~ (still denoted by fn)- Moreover, 

for every n ~ m the maps fn and fm belong to different arcwise connected 

components of Diff(S i x  S3x $3), because they induce different maps in homology. 

Let V, s be the manifold obtained by gluing K s and N 8 along their boundaries 

via the diffeomorphism in = j o f~ o j - : :  

V~ s = K s U].: ~7___,~7 N s. 

This surgery can be made symplectic. Indeed, if Z = (X, Y) is a tangent vector 

at T(,,y)Eo 7 _~ T~(S: x S3) x Ty(S3), a straightforward computation shows that  

( l :~)(~,~)(z)  = ~(~,,,)(z) + n < y~, y >. 

LEMMA B: The forms f*~ and ~ are homotopic through contact forms. 

Proof of Lemma B: Let a(x,y)(Z) =< y2, y > and let ~t = ~ + tna. The form 

a is exact, since 

dy 
= <  y2, dy > = <  1, ~ > =  - < 1, d(y -1) > =  - < 1, d-~ > =  -dyo. 

Thus (d~t) 3 = (d~) 3 and, by Lemma A, (d~) 3 = E 3. Moreover, we have aAE 3 = 0, 

so 

~ A (d~)  3 = (~ + tn~) A --~ = ~ ^ --~ = ~ A (d~) 3 

For each t, (t is a contact form. | 
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By the theorem of J. W. Gray (cf. ]6]), we then deduce that f*~ and ~ are iso- 

topic. Therefore, the manifold V 8 admits a symplectic structure which coincides 

outside of a large ball with the standard symplectic structure of C a. Moreover, it 

is easy to check that  H2(V, s, Z) = 0. It then follows that  V~ s is diffeomorphic to 

Ca from a result of Y. Eliashberg, A. Floer, M. Gromov and D. MeDuff (see [11], 

p. 653 theorem 1.5 and [4] for a detailed account of their personal contributions). 

3.3 PROOF OF THEOREM 1 FOR n ---- 4. We mimic what is done in [5]. The idea 

is to show that  V 8 _~ Ca implies a3(j, v) = 0. We first define explicit generators 

of each homology group involved in the proof. Let 

H 3 ( S  3 x S 1) : Z  < o~ 0 > ,  HaC KS) = Z < H >, 

H 3 ( ~ )  =Z  < ol > ~ Z < 7/>, H 3 ( N S ) = Z < A > ,  

H3(27) =Z < a > • g < h > .  

Here Z < g > denotes the infinite cyclic group generated by g, C~o is the 3-cycle 

{1} x [S 3] of S 3 x S 1, a is {1} x IS 3] x {1} in E~, ~7 is {1} x {1} x [$3], a = j , a ,  

h = j,~/, A = j ,  ao and H is such that lk( j (S  1 x $3), H)  = 1. Let i: E 7 > K s 

and L: Z 7 > N s denote the natural inclusions and let k be the composition 

L o in. The maps i and k induce two homomorphisms: 

i,: H3(~ 7) > H3(K s) and k,: H3(~ 7) ~ H3(NS). 

It is obvious that  

k,(h) = nA,k,(a) = A, 

i , (h)  = H,i ,(a) = Ik(j(S 1 x S3), a). 

By the choice of the unitary tangent field v on S 1 x $3, we get c~ = Jv(c~o) (with 

obvious notation). Since j is a symplectomorphism, it is easy to see that  

lk ( j (S  1 x S3), a) = Ik(j(S 1 x S3), Jr({1} x S3)) = <  aa(j, v), C~o > .  

Hence, with respect to the basis (a, h) and (A, H),  the matrix of the map i,  @ 

( - k , )  is given by 

( 1 1) 
M = < a3(j,v),c~o > 

On the other hand, from the Mayer-Vietoris sequence 

0 ~- H,(V2)  > H3(~7) ,e_~k.)  H3(KS) • ga(NS) ~ Ha(V2) ~_ 0 
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one deduces that the map i.  (~ ( - k , )  is an isomorphism. The determinant of the 

matrix M must be ±1. Since this determinant is equal to - l + n  < an(j, v), a0 >, 

it follows that  < (73(j, v), C~O > =  0. | 

3.4 PROOF OF THEOREM 1 FOR n ---- 8. It suffices to consider the Cayley 

algebra O instead of H and to mimic the above proof. Nevertheless, some points 

of this proof deserve more explanations since the nonassociativity of (} introduces 

some new difficulties. 

Recall that the associator [x, y, z] of a triple of elements of O is the difference 

(xy)z - x(yz). In (}, a weak form of associativity holds, namely, the associator is 

a trilinear map. Moreover, [y, y - l ,  z] = 0. We need this property to prove that  

the map 
fl :  O* × S 7 -----+ O* × S 7 

(x,y), 
is a diffeomorphism. Indeed, 

= x2y  (X ly )y  -1  = ( 2y)y-1 

x l ( y y  = 

since [y, y - l ,  z] = 0. As fn = f l  o . - .  o f l ,  fn is also a diffeomorphism. 

Difficulties arise when one wants to establish an analogue of Lemma A. This 

is due to the fact that the group 

G8(~) -- {A E SO(8): f*~ = ~ where f (x ,  y) = (Ax, y)} 

• 1 Re((xy)d-2), with is very small: it contains only + I d  v (Here ~(~,y) = 
(x,  y) O* × $7.)  

L E M M A  C :  Let 

d 1 1 Re(dx.yAd2),  E1 -- ( ] - ~ )  A Re(xyd-2) + - ~  

1 
~2 =~-~-~ Re(xdy A d-2). 

One has d~ -- E1 + :~2 a n d  (d~ )  7 = 7  
---- ~ 2 "  

Proof of Lemma C: Similarly to Lemma A, the nontrivial step is to prove that  
~ 6 ~  -2=1 = 0. Let As(~) = {A e SO(8): f*~ = ~ where f ( x , y )  = (Ax, Ay)}. It 

turns out that As(()  is the exceptional Lie group G2 (see [9] p. 114). This Lie 

group can be seen as a Lie subgroup of SO(ImO) _~ SO(7). Moreover, it is well 
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known that G 2 / S U ( 3 )  ~_ $6. Thus, one can work out computations at points 
(x, y) with x = (x0, xl, 0, 0, 0, 0, 0, 0). Let Volx denote dxo A . . .  A dx7 and let 
Voli,j,k denote the form 

A A A 

dyo A . . .  A dy~ A . . . A dyj A . . . A dyk A . . .  A dy7 

where dyi, dyj and dyk are missing and set 

flij ,k = Voli,j,k A(yidyi + y jdy j  + ykdyk). 

A direct computation shows 

1 
=2=1~6-- ---~ 1440(~X2.. + X12) 4 Volx A[/~1,2,3 -/~1,4,5 - ~1,6,7] 

- 

+ + v 0 1 .  - - 

2xoxl  
+ t 0  ;x~ + x})5 Volx A[Z2,5,6 + fl2,*,7 + Z3,5,7 - Z3,4,6]). 

7 Then, since ~ i = o  Y~ = 1, all the/3i,j,k vanish. | 

The rest of the proof of Theorem 1 runs exactly as in 3.3. 

4. S o m e  genera l i za t ions  

4.1 ON LAGRANGIAN EMBEDDINGS OF SOME QUOTIENTS OF S 1 X S n - 1 .  Let 
F be a finite multiplicative subgroup of S 3. The quotient S3/F is an orientable 
Riemannian homogeneous 3-dimensional manifold of positive constant curvature 
(every finite subgroup of S 3 ~- SU(2) is fixed point free, see [14]). Let j be a 
Lagrangian embedding of S 1 x S3/F into C 4. As H3(S 1 x S3/F) -~ Z ~ F' where 

F' = F/[F, F] is the abelianization of F, the linking class a3(j, v) splits in a linear 

part and a torsion one. 

PROPOSITION: (1) Let  j :  S1 x S3/F ---+ C 4 be any Lagrangian embedding  and 

let v be a nonvanishing vector field on S 1 x S3/F tangent to the factor S 1. Then, 

the linear part  ofa3( j ,  v) vanishes. 

(2) Let  j: S1 × R p 7  ~ C 8 be any Lagrangian embedding  and let v be a nonva- 

nishing vector field on $1 × R p 7  tangent to the factor S 1. Then, the linear part  

of a7 (j, v) vanishes. 
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Remark  B: If M n admits a Lagrangian immersion in C ~, then S 1 x M n 

admits a Lagrangian embedding into C n+l (see [1], for instance). As any ori- 

ented 3-dimensional manifold is parallelizable, it follows from the Gromov-Lees 

theorem that  such 3-manifolds admit  a Lagrangian immersion. Thus S 1 x S3/F 

admits a Lagrangian embedding. Similarly, since RP  7 is parallelizable, it admits 

a Lagrangian immersion and S 1 x R P  7 admits a Lagrangian embedding. 

Remark  C: There is only one (proper) finite multiplicative subgroup F of $3 C H 

such that  F ~ = 0 (and thus a3 has no torsion part).  This subgroup is the lift of 

the dodecahedral subgroup of SO(3) to the double covering S 3 ~ SO(3). The 

quotient E 3 = S3/F is the Poincard sphere. 

4.2 PROOF OF THE PROPOSITION. 

Proo[ of  (1): We first assume that  F acts by left multiplication on $3. The 

diffeomorphism 
f , :  S 1 x S 3 x $3 ~ S 1 x S 3 x S 3 

(x,y), (xy",y) 

gives a diffeomorphism on the quotient S 1 × (S3/F) x S 3. Since G4(~) = S 3, 

the contact structure ~ on TI*(S 1 x S 3) also induces a contact structure on 

TI*(S 1 × S3/F), still denoted by ~. The pull-back o f~  by f,~ is 

(f*~)(~,u)(Z) = ~(x,y)(Z) + n < y2, y >, 

where Z is a tangent vector at a point (x, y) of T l* (S 1 x S3/F). As in section 3.2, 

one can perform a symplectic surgery on C 4 and denote the resulting manifold 

by V s. I t  is easy to check that  H2(V, s) "~ 0 and thus V s is diffeomorphic to C 4. 

Repeating the arguments of Theorem 1, one gets 

< a3(j, v), s0 > =  0, 

where C~o is the 3-cycle of S 1 x S3/F represented by {1} x [S3/F]. Note 

that  the third cohomology group of S 1 × S3/F has some torsion, namely, 

H3(S 1 x S3/F, Z) - Z $ F t. Since F is finite, F ~ is a torsion group. 

If the group F acts by right multiplication, one has to consider the contact 

form ((~,y) -- ~ ae(yxd~)  and the diffeomorphisms (x, y),  ~ (ynx, y). 

Proof  o[ (2): The proof is similar to the proof of point (1). But since Gs(()  ~ Z2, 

it only applies to the quotient $7/Z2 ~-- ~:)7. m 
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5. I s o t o p y  c lasses  o f  e m b e d d i n g s  

5.1 GENERAL THEORY OF A. HAEFLIGER AND M. HIRSCH [8]. Let M n be a 

n-dimensional (n ~ 4) compact connected orientable manifold without boundary 

and let j :  M n > C ~ -~ R 2n be an embedding. Let M~ denote the manifold 

M n \ {x0}  where x0 is any point of M n. Let D1 c D2 be two embedded open 

disks centered at x0 and let A: M ~ > [0, 1] be a C ~ map such that  A - 1 on 

M '~ \ D2 and A -- 0 on D1. Given a nonvanishing normal vector field v on M0, 

let us set 
j ( x )  if x • O1, 

j r ( x ) =  [ j ( x )  + A(x)ux i f x • M  ~ \ O 1 .  

Finally, let X = C ~ \ j ( M  n \ D2). There exists a unique (up to homotopy) 

normal vector field u on M~ such that  

[j~(M")] = 0 in H,~(X,Z) ~- H n - I ( M  n \ D ~ , Z )  ~- H ~ - I ( M n , Z ) .  

We call this vector field the a s s o c i a t e d  v e c t o r  f ield u(j)  to the embedding j .  If  

u and u' are two nonvanishing normal vector fields, the following simple relation 

holds: 
[j~,(Mn)] - [j~(Mn)] = d(v', u) 

where d(u', u) is the difference class, the first obstruction to homotopy between 

v '  to v. 

Let T2,,n+I(M~) be the associated bundle to the frame bundle of M~ whose 

fiber is the Stiefel manifold V2n,,~+l of (n + 1)-frames of R 2n , with Gl(n, R) acting 

in a natural  way on the first n vectors of a frame. Every embedding j gives rise 

to a natural  section a j  of T2~,,+I(M~) given by 

aj :  M~ > T2n,n+l(M~) 

x ,  > [(djx(T~),vx(j))], 

where 7~ is any frame in TxM~. Let r(T2.,.+I(M~')) be the space of (continuous) 

sections of T2~,~+I(M~) and let E ( M  n, R 2") be the space of embeddings of M "  

into R 2n. 

THEOREM (A. Haefliger, M. Hirsch): The map j ~ aj induces a bijection 

on the 7to-level between the space of embeddings E ( M  n, R 2") and the space of 

sections r(T2~,.+I(M~')). 
There is a 1-1 correspondence between 7r0(r(T2~,.+~(M~))) and the co- 

homology group H"-I(M~,~r,_I(V2, ,n+I)) .  Thus ro (E(M" ,R2n) )  is in bijec- 

tion with H "-1  (M ~, Z2) if n is even, and with H "-~ (M",  Z) if n is odd. 
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5.2 THE CASE M n = S 1 × S n-1 WITH n = 4 OR 8. Throughou t  this section 

n will be 4 or 8. For short,  we put  E,, = E ( S  1 × S~-I,]R2n).  According to the 

preceding subsection, ~ro(E,,) is in bijection with Z2. 

Let v be a nonvanishing vector field on S 1 × S ~-1 tangent  to the factor S 1. By 

using the quaternionic or the octonian s tructure (we see O as H @ ell), we can 

define a global n-frame ~ = {el, e2,. • . ,  en} on M n 

( e l , . . . ,  e4) =(v ,  iv, jv ,  kv) if n = 4, 

(el, • • . ,  es) =(v ,  iv, jv,  kv, ev, eiv, ejv, ekv) if n = 8. 

The  map  j ~+ a j  can be identified with 

+: E .  

j ,  > aj: x ~-+ (djz(7C),v~(j)). 

The n-frame 7~ gives a trivialization of T2n,,~+I(M~). There are obvious 

identifications 

n--1 7r0(F(T2n,~+I(M3)))  -~[M~, V2n,n+l ] "~ IS 1 V S , V2n,n+l ] 

× IS 

"~'Kn-l(g2,n,n+l). 

As usual S 1 V S ~-1 denotes the one-point union of S 1 and S '~-1. Let 0 be any 

point  of S 1. The map ~b~: 7ro(E~) > Z2 is just  given by the class of the map  

{0} X ~n--1 ) V2n,n+ 1 

x ,  > (dj=(Ti),v=(j)) 

in ~rn-l(V2n,~+l) -~ Z2. We call this class en( j ) .  This modulo  2 number  tells us 

to which component  of En the map j belongs. 

5.3 PROOF OF THEOREM 2. Here again, n is 4 or 8. If  j is Lagrangian,  it is 

natural  to introduce another  map 

T--~: {0) × S " -1  ~ SO(2n) 

x ,  >(dj=(Ti),gdjx(T¢)). 

Let F be the forgett ing m a p  SO(2n) 

map  
FoT-j :  {0} x S " -1  

Xl 

> V2n,~,+l. The composi t ion yields a new 

) Y2n,n+l 

(dj=(n), gdj=(v)). 
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By Theorem 1, the nonvanishing vector field Jdj(v) is exactly v(j)  (on M~). 

Thus, the class [F o Tj] of this map in r , - l (V2n,n+l)  is en(j).  The map F 

induces the modulo 2 reduction at the ~r,_i-level. Indeed 

Irn_l(SO(2n)) F . )  7r,~-1(V2n,n+l) > 7rn_2(SO(n- 1)) 

mod 2 
Z ' Z 2  ~0.  

The relation: [FoT---j] = F~. [Tj] implies that  eTc(j) is the modulo 2 reduction of 

the class [Tj] E ~rn-l(SO(2n)). Let i: U(n) > SO(2n) be the natural inclusion; 

by construction the map T j  factors through U(n), i.e. T j  = i o Tj for some 
Tj: {0} × S n-1 > U(n). 

IF n = 8: The study of the long homotopy exact sequence associated to 

the fibration U(8) ----+ SO(16) > SO(16)/U(8) shows that  the map iF: Z = 

~rr(U(8)) > 7r7(SO(16)) = Z induced by i is the multiplication by 2. Thus, the 

modulo 2 reduction of the class [Tj] in r7(SO(16)) is zero, i.e. en( j )  = 0. 

IF n = 4: Again by the use of the homotopy sequence of the fibration U(4) 

SO(S) > SO(8)/U(4), one shows that the map i~: Z = r3(V(4)) - -~  7r3(SO(8)) 

= Z is an isomorphism. Thus, a priori, en(j) can be any of the two elements of 

Z2. Let us see that both values are actually taken. 

Let S 3 be the unit sphere of H, v the outward unit normal field of S3 and R 

the 3-frame (iv, jr ,  kv). Any Lagrangian immersion g of S 3 into C 3 gives rise to 

a map 
dye: $3 ~ U(3) C SO(6) 

x,  ) (dg~(R), Jdgx(R)). 
Let go and gl be two Lagrangian immersions of S 3 into C 3 such that  [dg~] is zero 

in r3(U(3)) and [dg c] is a generator of 7r3(U(3)). Then f~ = h × g,, (i -- 0, 1) 

are two Lagrangian immersions of S 1 x $3 into C × C 3 (h denotes the natural 

(Lagrangian) inclusion S 1 C C). Of course df c = dh c x dg c. A result of [1] 

claims that there exist two Lagrangian embeddings j0 and j l  of S 1 × S 3 into C ~ 

such that dj. c, is homotopic to df c (as maps from S 1 × S 3 to U(4)). Thus the 

maps Tj, are homotopic to Tfi. Let ~ be a point of S 1 and I be the inclusion: 

l: U(3) > V(4) 

( dhC(v) O)  
A ,  > 0 A " 

Then TIi = l o dg.C,. As I induces an isomorphism at the r3-1evel, Tf, represents a 

generator of r3(U(4)) if i = 1 and the zero class if i = 0. Therefore, Cn(j~) = i. 
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5.4 THE OBSTRUCTIONS A(., .) AND £(',-). We first need a preparatory lemma. 
Let n > 2 and let • be the classical isomorphism between U(n) and S 1 × SU(n). 

We denote by tsv(,,) E H3(SU(n), Z) the characteristic class of SU(n) and by a 

the class q/*tsv(, ). The following lemma is well known (see theorem 7.16 p. 146 

of [131). 

de 3 n LEMMA D: The "degree map" [M n, U(n)] ~ H (M , Z), f ,  > f*a is a group 

homomorphism. 

Let M n be a manifold admitting a Lagrangian immersion into C m , so a unitary 

trivialization of TM'* ® C and let ( e l , . . . ,  en) be an unitary basis of C m. The 

theorem of Gromov-Lees asserts that the map 

ILag(M '~, C a ) ) C ° ( M  n, U(n)) 

j ,  > dye(so) 

is a weak homotopy equivalence. By using this theorem, it is easy to build invari- 

ants for Lagrangian immersions. For instance, the class 8(j, So) = (djC(so))*a is 

an obvious one. (Lemma D shows that  (i(j, So) does not depend on the choice of 

the unitary basis of C ~.) If Sl is another trivialization, then there exists a map 

f: M n > U(n) such that  sl = sol.  By Lemma D 

g(j, s,)  = (djC(sl))*a = (djC(so) . .f)*a = J(j, so) + fla. 

Therefore, if j0 and j l  are two Lagrangian immersions, the class 

A(jo, Jl) = 5(jl, So) - J(Jo, so) 

does not depend on the choice of the trivialization. By construction, this class 

is an obstruction to the existence of a Lagrangian regular homotopy between J0 

and Jl- Let e(jo, j l )  be the modulo 2 reduction of A(jo, j l ) .  

LEMMA E: Let jo, j l  be two Lagrangian embeddings o r s  1 x S 3 into C 4. Then 

e(jo, j l )  is the only obstruction to the existence of a smooth isotopy between jo 

and Jl. 

Proof of Lemma E: Let k be the inclusion {0} x S 3 ) S 1 x S3. One has the 

following commutative diagram: 

7r3(U(4)) -~ [S 3, U(4)] deg> H3(~3, Z) (k*)-l> U3(~ 1 x ~3, Z) 

7r3(V8,5 ) ~ [$3, V8,5 ] deg> H3(S3, Z2 ) (k*)-: H3(~ 1 x ~3, Z2) 
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where k* and the degree maps are isomorphisms. (The second degree map is just 

f ~-~ f**ys.~ where *ys.~ 6 H3(Vs,5, Z2) is the characteristic class of Vs,5.) The 

first vertical maps between the cohomology groups is induced by the coefficient 

homomorphism 

Z = ~'3(U(4)) rood2> 7r3(Vs,5 ) = Z2 

(see, for instance, [2] pp. 275-278 for this point). Let so be the trivializa- 

tion of T M "  ® C induced by the global n-frame 7~. It is readily seen that: 

(k*)-ldeg[Tj]  = 3(j, s0) and that  ( k * ) - l d e g e n  = (k*) - ldeg[F  o i o Tj] = 

p26(j, so). Hence 

e( j0, j l )  = (k*) -1 deg(e~(jo) - e~(j l )) .  | 

5.5 THE ACTION OF Diff(M n) ON ro(E(M'~,Cn)) .  We first recall an alterna- 

tive description of the solution to the embeddings classification problem. Any 

embedding j:  M "  > R 2" gives rise to a Z2-equivariant map 

M "  × M '~ - A M "  > S 2 " - 1  

j (x )  - j (y)  (x, y), 
I j(x) - j (y ) l  

(AM" denotes the diagonal of M n × Mn). Let $ be the space of E2-equivariant 

maps of M u × M " - A M "  into S 2"- 1. A celebrated result of A. Haefliger [7] states 

that, if n > 4, there is a one-to-one correspondence between ro(E(M'~,R2"))  

and the set no(S). The computation of to(S)  is a classical problem in homotopy 

theory. Let M* -- (M" × M "  - AM'~)/Z2 be the reduced symmetric product of 

M "  and P be the bundle (M" × M " - A M  n) XZ2S 2n-1 ) M*. There is a natural 

bijection between $ and the space of sections of P,  thus Ir0($) = lr0(F(P)). 

Since the fiber of P is the sphere S 2n-1, one has ro (E(M" ,X2n) )  ~- ~ro(r(P)) -~ 
H 2"-1 (M*, Z). 

LEMMA G: The action ofDiff(S 1 x S 3) on ~r0(E(S 1 × $3, C4)) is trivial 

Proof of Lemma G: A diffeomorphism ¢ of M "  induces a Z2-equivariant diffeo- 

morphism of M "  x M "  - AM n and thus a diffeomorphism • of M*. The action of 

¢ on r 0 ( E ( M " ,  R2")) is given by the induced isomorphism ~* on H 2 " - I ( M  *, 7],). 

It is well known that for an orientable even-dimensional manifold M",  the co- 

homology group H2'~-I(M*,Z)  is isomorphic to H " - I ( M " , Z 2 ) .  In our case 

M n = S 1 x S 3 and one gets HT(M *, Z) = Z2; (I)* is simply the identity. | 
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